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The AI/LLM hype

Policy

• The EU AI Act ‘last minute changes’

• Biden’s executive order on safe/secure/trustworthy AI: An RMF for generative AI 

• IBM Research last Friday at Moncloa Palace 

• …

Science

• Transformers can do Bayesian inference

• Transformers as statisticians…

• Learning the language of time series…

• …

• Towards evaluating the robustness of LLMs…
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A sample example
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From Gallego, 
DRI (2022)
Code there



A paradigm change in NLP

• From pre-deep learning
• Language as a set of elements and rules to be combined

• Context independent grammars

• Closer to artificial languages (programming) than to natural ones

• To statistically based
• Language as probabilities of word sequences

• Computing frequencies of words, n-grams,…

• Closer to natural language

• Combined with deep nns (Transformers) SOTA 

• Almost a commodity (like vision)
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Into LLMs. Objectives

• Short term. Provide a forum to facilitate understanding on latest
developments in LLMs.

• Medium term. Explore possibility of creating a working group for
less covered relevant areas in LLMs, Bayesian issues in
relation to LLMs and security issues in LLMs.
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Into LLMs. Schedule 
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•April 9th at 11.30 @ICMAT. David R Insua. DL, 

RNNs

•April 16th at 11.30 @CUNEF . Roi Naveiro. 

Transformers

•April 23rd at 11.30 @ICMAT. Carlos G Meixide. GPT 

•May 7th at 11.30. @CUNEF. Victor Gallego. RLHF 

•May 8th at 11.30. @ICMAT. David R Insua. LLMs, 

Bayes and Security 



Into LLMs. Logistics

Zoom (recorded at ICMAT YouTube channel)

https://us02web.zoom.us/j/83182511916?pwd=bTdSWFY1OTJ6
VWx1UTVmbFhYZktLUT09

Mailing list (if not contact roi.naveiro AT cunef.es)

llms-cunef-icmat-rg2024@googlegroups.com

Materials (slides, videos,…)

https://llms-cunef-icmat-rg2024.github.io/

For further info (roi or david.rios AT icmat.es)
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Into LLMs
1. Intro RNNs: LSTMs and GRUs
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Intro RNNs. LSTMs and GRUs. Key ideas 

• LLMs are deep neural nets, hence a brief recall of dnns

• LLMs are recurrent neural nets, hence a brief recall of rnns (lstm, gru)

• dnns process numbers, hence a brief recall of means to convert text
into vectors (embeddings)

• The evolution of NLP

• Hints on Bayesian nns
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Intro RNNs. Background.

• Current Advances in Neural Networks https://www.annualreviews.org/doi/pdf/10.1146/annurev-
statistics-040220-112019 Gallego, DRI 

• Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling  
(https://arxiv.org/abs/1412.3555 Chung, Gulcehre, Cho, Bengio

• Chollet, Allaire (2018)

• Goodfellow, Bengio, Courville (2017) 

Videos

Summary of materials (slides, video, R labs) Chapter 7 in https://datalab-
icmat.github.io/courses_stats.html#Introduction_to_Machine_Learning

https://www.youtube.com/watch?v=6niqTuYFZLQ from 8:55 
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From NNs to deep NNs
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Shallow neural nets 
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Linear in   beta’s,   nonlinear in gamma’s



Motivation. Cybenko’s theorem

Any continuous function in r-dimensional cube 

may be approximated by models of type

when the activation function is sigmoidal

(as m goes to infty)
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Training 

Given training data, maximise log-likelihood

Gradient descent

Backpropagation to estimate gradient
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Backprop. The gradient flow
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From CASI (18)



Training with regularisation
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Weight decay Ridge



Vanishing gradient problem

• When using sigmoid activation

functions, as the derivative is in 

(0,1), if we pile up several layers

derivatives rapidly vanish, 

eventually, blocking training,…
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Regularisation II. Early stopping

• Training is iterative

• Preserve validation set. After each iteration, compute validation error.

• Typically, validation error reduces and then grows (due to overfitting)

• Stop before this happens-→ Early stopping

• May reduce network complexity

• Dropout
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Bayesian analysis of shallow neural nets (fixed arch) (Muller, DRI, 98)
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Bayesian analysis of shallow neural nets (fixed arch)
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Classification

Use a multinomial likelihood

Use softmax to compute class probabilities
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Other

Non-linear autoregression (Menchero, Montes, Muller, DRI)

Nonparametric regression (DRI, Muller)

Gaussian processes
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To deep nns

25

(Shallow) Neural nets                                                                             Deep neural nets 
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Motivation. New universal approximation theorems

Arbitrary-width. Remember Cybenko’s (and others)

Arbitrary-depth.

Any (Lebesgue) integrable function can be arbitrarily approximated by
RELU fully-connected neural network by as its depth goes to infinity
(and its width is bounded by max(n+1,m)  n dimension of origin, m 
dimension of image)
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The evolution in activation functions
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Training. Same idea!!! 

Given training data, minimise -- log-likelihood + regulariser

Gradient descent

Backpropagation to estimate gradient
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Problems
Evaluating the objective function. Depends on n

Evaluating the gradient. Depends on n

Each gradient sub-term over a large number of parameters and over
a long backwards recurrence

Complexity is O(w) but w is getting pretty big in Deep networks
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From gradient descent…

Training goes through minimising

Requires gradient

Might not even fit in memory,  very slow anyway
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… to stochastic gradient descent

(Randomly) sample a minibatch of size m’.

Approximate gradient

Update via gradient descent
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Stochastic gradient descent
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Use backprop
at this stage



SGD.  Robbins Monro conditions (1954!!!!)

If the learning parameters are chosen so that

and the gradient estimator is unbiased

then SDG converges a.s. (to a local optimum)

NB: The minibatch size can even be 1 (some authors reserve SDG name
to size 1 batches) , ie randomly sample just one instance and proceed

NB2: The batch now fits in memory!!!

NB3: May aid in escaping local minima!!!
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SGD variants

Check Ruder’s paper  https://arxiv.org/abs/1609.04747

https://keras.io/api/optimizers/

Adam tends to be favoured

Trascends neural nets:  very large scale optimization min J(𝜃)
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Bayesian approaches in DL lagging….

Transfer learning

Adversarial machine learning

Explainability/Interpretability
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NNs for sequence processing
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Motivation

• Fully connected NNs can approximate any function….

• But training can be super slow and may require lots of data

• In some domains, lots gained through specific archictectures

• In NLP, recurrent neural nets (RNNs), and successors

• More generally in sequence processing, RNNs, and 
successors
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Time series (sequence) analysis

• Traditional models in time domain:  ARIMA, exponential smoothing

• Models in frequency domain: Spectral analysis

• State space models: Kalman filter, Hidden Markov models, dynamic linear models
(plus non linear and non gaussian extensions)

Check Prado; Ferreira, West  (2021) for a comprehensive review
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NNs for time series. Nonlinear autoregressions… 

39

Shallow NN 

• Input. Some entries, prior time series 

observations

• Output, value of time series to be forecast

(one step ahead, two steps ahead,….) 

Fully connected… theoretically OK, but lot to be 

gained from special structure
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RNNs. Key ideas 

• Specialized for sequential data (numbers, words, letters,….) 

• Can process sequences much longer than those achievable with fully connected NNs

• More amenable to parallelisation (transformers)

• Each neuron has one (or more) ‘internal memory’ (hidden) to store info about previous entries

• Trained with variants of standard algos: backprop through time

• Created in 80’s and late 90’s, yet their recent successes (SIRI, etc…) made them fashionable.

• Latest wave: Transformers (attention is all you need), LLM, Chat-GPT,… ‘the’ architecture

• Myriad applications
• Speech recognition
• Language modeling and text generation
• Automatic translation
• Image description generation
• Summaries, Q&A 
• Image, Video,….
• Math proofs, Stats,…
• Molecular description, drug Discovery,….
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Core concept

Recurrence and computational graphs
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Recurrence and unfolded computational graphs

• Dynamical system. Recurrence unfolded

• Every recurrent function as recurrent NN        h (hidden) state

42

Lag 1
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Core concept
Working with text data

Goodfellow et al 12, Chollet and Allaire 6 

For intuitive intro

https://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
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Text

Sequence of characters

Sequence of words

Sequence of n-grams

Tokenize and vectorize

• Segment text into words, transform each word into a vector

• Segment text into characters, transform each character into a vector

• Extracts n-grams of words or characters, transform each n-gram into a 
vector
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One hot encoding

Unique integer to each word

Word, vector of zeroes, except a 1 for the word

Sparse and high dimensional

Bag of words
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Word embeddings

Dense word vectors

Low-dimensional, floating point vectors

Learned from data 

Jointly with the main task. Embedding layer

Precomputed or pretrained embeddings. Word2vec, Glove,…
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Word embedding. Example

Parametrised function

Train to predict if a 5gram is valid

The actual interest is in W

BERT trains by 300 bn tokens to predict the next word
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RNNs
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RNNs

• Emerge to process sequences, specially with different length inputs

• Add feedback connections
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Image-
Caption

Text-
Sentiment

Machine 
translation

Image-
Object



RNNs
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RNNs
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RNNs: Short-term vs Long-term dependencies

The clouds are in the …..
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RNNs: Short-term vs Long-term dependencies

I grew up in France…. I speak fluent ….
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RNNs. Elman’s model

Network updates internal state h  updated at each step

e.g.

Weights reused at each time:

• learn patterns independently of position

• reduction of number of parameters
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RNN. One output per step, recurrence between hidden nodes
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Parameters U, W, V

For example, 
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RNN: many to one example
Assigning sentiment (-,+) to a tweet
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Training: Backprop through time

Unfolding the (computational) graph

Applying backprop

Limiting steps back for stability:

Truncated backprop

SGD or Adam or …
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Problem with Elman’s model….

Backprop one step back

Over time 

Repeated multiplications by W.  
If biggest eigenvalue>1, gradient explosion (gradient clipping)
If biggest eigenvalue<1, gradient vanishing (LSTM, GRU)
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Long Short-term memory (LSTM) NNs

Hochreichter, Schmidhuber
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LSTM

• Introduced by Hochreiter y Schmidhuber in 1997 but only used (a 
lot!!!) in last decade for NLP

• Hidden cells substituted by LSTM cells mitigating

vanishing and explosion
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From RNNs to LSTMs
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Basic ingredients

Memory Cell state (another hidden state)             Gate
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I )  Info to be forgotten. Forget gate
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ii)   Info to be stored in cell state
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iii) Update cell state
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iv) Decide output  (amount of content exposure) 
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LSTM Global scheme
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Gate recurrent unit. GRU  
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Lab in R at github site 
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RNNs in Keras. From Lab

model <- keras_model_sequential()

model %>% 

layer_embedding(input_dim = vocab_size, output_dim = 4) %>%

layer_lstm(4, return_sequences = TRUE, go_backwards=TRUE) %>%

layer_global_average_pooling_1d() %>%

layer_dense(units = 4, activation = "relu") %>%

layer_dense(units = 1, activation = "sigmoid")

model %>% compile(  optimizer = 'adam',  loss = 'binary_crossentropy',  metrics = list('accuracy'))

history <- model %>% fit(  partial_x_train,  partial_y_train,  epochs = 25,  batch_size = 512,  validation_data = list(x_val, 
y_val))
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Classical RNNs in Keras (R)

layer_simple_rnn(….)
layer_lstm(…) 
layer_gru(…)
bidirectional(layer_lstm(…))
layer_conv_1d(…)

OHE text_tokenizer
Layer_embedding(input_dim,output_dim)
Word2vec, GloVe
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April 16th 11:30 
Transformers and LLMs
Attention is all you need

(with Roi Naveiro @CUNEF site) 
https://us02web.zoom.us/j/83182511916?pwd=bTdSWFY1OTJ6VWx1UTVmbFhY

ZktLUT09
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Transformers 

Videos

Transformers for poets

• https://www.youtube.com/watch?v=SZorAJ4I-sA Basic intro

• https://www.youtube.com/watch?v=_UVfwBqcnbM Detailed non-tech intro

Some technical details

• https://www.youtube.com/watch?v=S27pHKBEp30 Contextual intro

Attention is all you need. The seminal paper

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Its annotated version

https://nlp.seas.harvard.edu/annotated-transformer/

Formal algos for transformers

https://arxiv.org/pdf/2207.09238.pdf

Software oriented explanations

https://osanseviero.github.io/hackerllama/blog/posts/random_transformer/

https://peterbloem.nl/blog/transformers
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